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ABSTRACT

Disturbed calcium (Ca2�) homeostasis, which is implicit to the aging phenotype of klotho-deficient mice,
has been attributed to altered vitamin D metabolism, but alternative possibilities exist. We hypothesized
that failed tubular Ca2� absorption is primary, which causes increased urinary Ca2� excretion, leading to
elevated 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] and its sequelae. Here, we assessed intestinal Ca2�

absorption, bone densitometry, renal Ca2� excretion, and renal morphology via energy-dispersive x-ray
microanalysis in wild-type and klotho�/� mice. We observed elevated serum Ca2� and fractional
excretion of Ca2� (FECa) in klotho�/� mice. Klotho�/� mice also showed intestinal Ca2� hyperabsorp-
tion, osteopenia, and renal precipitation of calcium-phosphate. Duodenal mRNA levels of transient
receptor potential vanilloid 6 (TRPV6) and calbindin-D9K increased. In the kidney, klotho�/� mice
exhibited increased expression of TRPV5 and decreased expression of the sodium/calcium exchanger
(NCX1) and calbindin-D28K, implying a failure to absorb Ca2� through the distal convoluted tubule/
connecting tubule (DCT/CNT) via TRPV5. Gene and protein expression of the vitamin D receptor (VDR),
25-hydroxyvitamin D-1-�-hydroxylase (1�OHase), and calbindin-D9K excluded renal vitamin D resistance.
By modulating the diet, we showed that the renal Ca2� wasting was not secondary to hypercalcemia
and/or hypervitaminosis D. In summary, these findings illustrate a primary defect in tubular Ca2�

handling that contributes to the precipitation of calcium-phosphate in DCT/CNT. This highlights the
importance of klotho to the prevention of renal Ca2� loss, secondary hypervitaminosis D, osteopenia,
and nephrocalcinosis.
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Characterization of a mouse that showed a pheno-
type comparable to human aging led to the identi-
fication of the hormone klotho.1 Klotho�/� mice
have atherosclerosis, osteopenia, soft tissue calcifi-
cations, pulmonary emphysema, and altered glu-
cose metabolism.1 It has been suggested that the
etiology of many of these findings is a primary de-
fect in phosphorous [P(i)] and calcium (Ca2�) ho-
meostasis.2,3 Klotho�/� mice have elevated serum
levels of Ca2�.1,4,5 The mechanism mediating hy-
percalcemia is poorly understood. A possible expla-
nation invokes the role of klotho in vitamin D ho-
meostasis. Klotho has been proposed to participate

in a negative feedback circuit to inhibit 1,25-dihy-
droxyvitamin D3 [1,25(OH)2D3] synthesis.6,7 Spe-
cifically, klotho is necessary to transduce the signal
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of fibroblast growth factor 23 (FGF23) through the FGF recep-
tor, thereby suppressing CYP1b expression, the enzyme that
mediates the conversion of 25-hydroxyvitamin D into
1,25(OH)2D3. Thus, the absence of klotho results in increased
serum levels of 1,25(OH)2D3 and reduced serum concentra-
tions of the calciotropic hormone parathyroid hormone.4,7,8

This would drive increased resorption of Ca2� from bone, hy-
perabsorption from the intestine, increased serum levels of
Ca2�, and consequently increase renal Ca2� excretion. Defin-
itive proof of this is lacking because the molecular control of
Ca2� homeostasis in klotho�/� mice has yet to be delineated.

Consistent with the above hypothesis is the observation that
klotho�/� mice display hypercalciuria4,5,9 and that normalization
of serum 1,25(OH)2D3 levels reverts many, but not all, of their
abnormalities.6 The published literature supports an alternative,
complementary hypothesis.9–11 A primary defect in tubular Ca2�

handling might cause hypervitaminosis D and renal Ca2� wasting
observed in klotho�/� mice. Consistent with this idea, in vitro,
klotho mediates an increase in cell surface expression of transient
receptor potential vanilloid 5 (TRPV5)10,11 the distal convoluted
tubule/connecting tubule (DCT/CNT) channel responsible for
the transcellular absorption of Ca2�.12 This process is itself im-
plicit to Ca2� homeostasis as TRPV5 is the predominant regulator
of urinary Ca2� excretion.13 Therefore, we set out to test the hy-
pothesis that klotho�/� mice have a primary renal Ca2� leak that
contributes to a secondary increase in 1,25(OH)2D3 synthesis and
its consequences.

RESULTS

Klotho�/� Mice Show Hypercalcemia and
Hypercalciuria
Klotho�/� mice between the age of 7 and 8 wk were housed for
24 h in metabolic cages, after which they were killed, serum was
collected, and kidney, intestine, and bone were isolated.
Klotho�/� mice display significant hypercalcemia and hyper-
phosphatemia (Figure 1A; Supplemental Tables 1 and 4). They
are also significantly smaller than their wild-type littermates (Sup-
plemental Table 2) and show increased renal Ca2� excretion (Fig-
ure 1B). Klotho�/� mice have a lower urinary pH (Figure 1C), a
reduced urine output, and more concentrated urine, although
their daily water intake (when corrected for weight) is greater
(Supplemental Table 2). The decrease in urinary volume re-
mained significant even when urine output was corrected for the
weight of the mice. To rule out the possibility that a metabolic
acidosis was driving the aciduria, we performed venous blood gas
analysis. The results indicated that klotho�/� mice had a respira-
tory acidosis (decreased plasma pH, increased CO2, and increased
bicarbonate; Supplemental Table 3).

Intestinal Hyperabsorption Contributes to Elevated
Serum Ca2� Levels in Klotho�/� Mice
We proceeded to evaluate the molecular mechanisms mediat-
ing active Ca2� transport from the intestine. First, quantitative

real-time PCR (qPCR) was performed on duodenal samples
from klotho�/� and wild-type mice for TRPV6, calbindin-
D9K, and plasma membrane Ca2�-ATPase (PMCA1b). This
showed an increase in the mRNA level of both TRPV6 and
calbindin-D9K in klotho�/� mice and no alteration in
PMCA1b expression (Figure 2, A–C). These results are consis-
tent with the elevated 1,25(OH)2D3 levels present in klotho�/�

mice (Supplemental Table 1). That the altered mRNA expres-
sion translated into increased protein expression was shown by
immunoblotting for calbindin-D9K (Figure 2, D and E). Im-
portantly, the functional consequences of these observations
were determined by measuring intestinal Ca2� uptake. This
showed that klotho�/� mice absorb 45Ca2� at a faster rate than
their wild-type littermates (Figure 2F).

Opposite Expression Levels of Renal Ca2� Transport
Proteins in Klotho�/� Mice
The effect of increased intestinal Ca2� uptake and 1,25(OH)2D3

levels on the expression of renal Ca2� handling proteins was as-
sessed. First, using qPCR, the renal expression of TRPV5, calbi-
ndin-D28K, NCX1, and PMCA1b was evaluated. The expression
of TRPV5 mRNA was found to be significantly elevated (Figure
3A). In contrast, the expression of both NCX1 and calbindin-
D28K was decreased (Figure 3, B and C), whereas PMCA1b expres-
sion was unaltered (Figure 3D). We proceeded to substantiate
these findings; first the protein expression of calbindin-D28K was
measured and determined to be downregulated via semiquanti-
tative immunoblotting (Figure 3, E and F). Then, the level of
TRPV5 protein expression was determined by quantification of

Figure 1. Klotho�/� mice characteristics. Plots of serum Ca2�

concentration (mM) (A), fractional excretion (FE) of Ca2� (B), urine
pH (C), and urine osmolarity (D) from wild-type and klotho�/�

(KO) mice, n � 10 for both groups. *P � 0.05 in comparison to
wild-type.
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fluorescence from kidney sections that had been immunolabeled
with an antibody against TRPV5. This was also in agreement with
the findings of the mRNA analysis; TRPV5 protein expression was
upregulated in the klotho�/� mice relative to their wild-type lit-
termates (Figure 3, G and H).

To exclude the possibility of renal 1,25(OH)2D3 resistance,
we measured calbindin-D9K, vitamin D receptor (VDR), and
25-hydroxyvitamin D-1-�-hydroxylase (1�OHase) mRNA
expression in the kidney. Calbindin-D9K expression was ap-
propriately increased in the klotho�/� mice relative to their
wild-type littermates on the control diet (Supplemental Figure
3A). The protein expression of calbindin-D9K was upregulated
in klotho�/� mice as well (Supplemental Figure 3D). VDR
mRNA and protein expression was unaltered (Supplemental
Figure 3, B and E), whereas 1�OHase was increased at the
mRNA level in klotho�/� mice (Supplemental Figure 3C).

Klotho�/� Mice Develop Ca2�-P(i) Precipitates in the
DCT/CNT
The presence of concentrated urine and hypercalciuria
prompted us to look at the expression of aquaporin-2. Semi-
quantitative immunoblot analysis of aquaporin-2 expression

from kidney lysate of wild-type and
klotho�/� mice showed an increased
expression in klotho�/� mice (Figure
3, I and J), despite an elevated urinary
Ca2� excretion (Figure 1B). The func-
tional consequence of hypercalciuria
in klotho�/� mice was therefore stud-
ied.

Von Kossa staining identified Ca2�

precipitates throughout the cortex of
the klotho�/� mice (Figure 4, A and B).
Energy-dispersive x-ray microanalysis
(EDX) measurements were used and
showed that the precipitates consisted
of Ca2�-P(i) (Figure 4, E and F). High-
er-resolution imaging was used to iden-
tify their location. Both electron micros-
copy and light microscopy of Toluidine
blue–stained sections identified the
presence of Ca2�-P(i) precipitates dec-
orating what appeared to be DCT/CNT
(Figure 4, C and D). To confirm that the
precipitates were predominately con-
fined to the DCT/CNT, we performed
von Kossa staining on knockout kidney
sections and identified the DCT/CNT
region by fluorescently labeling with
calbindin-D28K (Figure 4, G–I). This
confirmed that many of the segments
expressing calbindin-D28K also con-
tained precipitates (Figure 4, G-I; Sup-
plemental Figure 1, A–C). To exclude
the possibility that the precipitates were

predominantly present in proximal tubules (PTs), after von Kossa
staining, PTs were identified by immunofluorescent labeling with
the breast cancer resistance protein.14 This confirmed that the
majority of Ca2�-P(i) precipitates were not in the PT (Supple-
mental Figure 1, D–F). Renal pelvis dilation was not observed in
klotho�/� mice, implying the absence of hydronephrosis or pre-
cipitates in the ureter.

Renal Ca2� Wasting Is a Primary Defect in Klotho�/�

Mice
To ascertain whether the renal Ca2� leak was primary or second-
ary to an increased serum Ca2� or 1,25(OH)2D3 level, these pa-
rameters were normalized in the klotho�/� mice. This was ac-
complished by feeding the animals a low Ca2�, P(i), and vitamin
D (�0.13 �g/kg calciferol) diet (LVD) (Supplemental Tables 4
and 5). This diet increased the weight of the klotho�/� mice to
that of the wild-type animals (Supplemental Table 5). LVD also
brought the serum level of Ca2� and 1,25(OH)2D3 back into the
normal range (Figure 5, A and B). Consistent with the hypothesis
that klotho�/� mice have a primary renal Ca2� leak, the normal-
ization of these parameters failed to revert renal Ca2� excretion to
that of the wild-type animal (Figure 5C). Furthermore, the ex-

Figure 2. Characterization of intestinal Ca2� handling. qPCR analysis of TRPV6 (A), calbin-
din-D9K (B), and PMCA1b (C) expression in duodenum. The results are expressed as a
percentage of wild-type and are normalized to the expression of HPRT, n � 8 per group. A
representative immunoblot (D) and quantification (E) of calbindin-D9K protein expression
from wild-type and klotho�/� duodenum, n � 7 per group; note �-actin has been blotted
(bottom panel) as a loading control. (F) 45Ca2� absorption into serum of wild-type (F) and
klotho�/� (�) mice after gastric gavage, n � 8 per group. *P � 0.05 in comparison to
wild-type.
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pression of TRPV5 remained elevated in klotho�/� mice,
despite a greatly reduced 1,25(OH)2D3 level, whereas calbi-
ndin-D28K expression was consistently lower (Figure 5, D
and E). However, intestinal and renal calbindin-D9K expres-
sion returned to the level of the wild-type mice (Figure 5F;

Supplemental Figure 3, A and D). Interestingly,
renal cortical Ca2� precipitates remained in some
of the klotho�/� mice, albeit to a reduced extent,
despite normalization of their serum Ca2� and
1,25(OH)2D3 levels (Supplemental Figure 2).

To assess the consequences on bone, a detailed
structural analysis of femurs was performed.
Klotho�/� mice have reduced bone mass compared
with wild-type littermates (Figure 5G). Both trabecular
and cortical thickness are significantly decreased, lead-
ing to lower trabecular and cortical bone volume and a
severely reduced trabecular bone fraction (Figure 5G;
Supplemental Table 6). Trabecular number is also sig-
nificantly decreased in klotho�/� mice (Supplemental
Table 6). On LVD, the bone phenotype of klotho�/�

mice resembles that of wild-type mice fed the LVD diet
(Figure 5G). This is corroborated by complete restora-
tion of all bone structural parameters to wild-type val-
ues (Supplemental Table 6). In addition, LVD seems to
increase femur length, perimeter, and femoral head
volume in both wild-type and klotho�/� mice (Supple-
mental Table 6).

DISCUSSION

This study clearly showed that increased renal Ca2�

excretion in klotho�/� mice is a primary distur-
bance. It is neither the result of increased serum
Ca2� levels nor elevated 1,25(OH)2D3 levels. In-
stead, our findings are consistent with a failure of
klotho to maintain TRPV5 activity in the DCT/CNT
(presumably through failing to retain it in the apical
plasma membrane). Klotho�/� mice show hypercal-
cemia, elevated 1,25(OH)2D3 levels, hyperabsorp-
tion of Ca2� from their intestine, and severe os-
teopenia. Renal Ca2� excretion is increased, despite
elevated TRPV5 expression. However, the renal ex-
pression of calbindin-D28K and NCX1 parallels that
of the TRPV5 knockout mice; in both cases, they are
reduced,12,15 implying a failure for klotho�/� mice
to reabsorb Ca2� from the DCT/CNT via TRPV5.
To exclude the possibility that renal Ca2� wasting
was secondary to increased serum Ca2� or
1,25(OH)2D3 levels, we normalized these parame-
ters in the klotho�/� mice. This prevented the devel-
opment of osteopenia and the increase in intestinal
calbindin-D9K expression. However, despite re-
duced serum Ca2� and 1,25(OH)2D3 levels,
klotho�/� mice had persistently elevated renal Ca2�

excretion. Thus, renal Ca2� wasting is a primary de-
fect in klotho�/� mice. This in turn may in fact drive increased
1,25(OH)2D3 synthesis, intestinal Ca2� hyperabsorption, re-
sorption from bone, and hypercalcemia.16 Regardless, a pri-
mary renal Ca2� leak contributes to nephrocalcinosis.

Central to the aging phenotype observed in klotho�/� mice

Figure 3. Characterization of the molecular mediators of renal transepithe-
lial Ca2� reabsorption. qPCR analysis of TRPV5 (A), NCX1 (B), calbindin-D28K

(C), and PMCA1b (D) mRNA expression in kidney. The results are expressed
as a percentage of wild-type; both are normalized to the expression of HPRT,
n � 8 per group. Representative immunoblot and quantification of calbindin-
D28K (E and F) and aquaporin-2 (I and J) protein expression from wild-type
and klotho�/� (KO) whole kidney lysate, n � 7 per group. Note �-actin has
been blotted (bottom panel) as a loading control. Quantification of TRPV5
protein expression in kidney of wild-type and klotho�/� (KO) mice (G), n � 6
per group. Representative images from the quantification are shown in H.
*P � 0.05 in comparison to wild-type.
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is Ca2� precipitation throughout many organ systems, not the
least of which is the kidney as shown recently by Ohnishi et al.8

This has been largely attributed to the formation of ectopic
calcifications.6 By examining the renal precipitations more
closely, we were able to identify the presence of discrete calci-
fications confined to distinct tubular segments, suggesting a
tubular pathology. The specific composition of the precipitates
was delineated and found to be Ca2�-P(i), a finding consistent
with the increased renal Ca2� and P(i) excretion observed in
klotho�/� mice (Supplemental Table 2).4,17 In fact, the dra-
matic increase in the urinary composition of these ions likely
resulted in their precipitation. The exact location of the Ca2�-
P(i) precipitates was further studied, first with light and elec-
tron microscopy and then more specifically by immunofluo-
rescence microscopy. Using the combination of von Kossa

staining to detect Ca2� deposits and nephron-spe-
cific immunofluorescence microscopy, we were able
to localize the majority of precipitates to the DCT/
CNT. This is the nephron segment where TRPV518

and klotho17 are expressed. TRPV5 activity is re-
quired to absorb Ca2� back into the blood from the
DCT/CNT lumen.12 It appears that a failure to do so,
unless compensated by regulatory mechanisms, re-
sults in Ca2�-P(i) precipitation. Although we ob-
served cortical tubular precipitations or nephrocal-
cinosis, our results imply that within the ureter
obstructions are not present nor do these mice suffer
from hydronephrosis. Cases of obstructive nephrop-
athy or hydronephrosis in either klotho�/� or
FGF23�/� mice have not been reported in the litera-
ture. The acidification of urine provides a protective
mechanism against Ca2�-P(i) precipitation.19

Klotho�/� mice have significantly acidified urine com-
pared with their wild-type littermates. Their urinary
acidification is not caused by a metabolic acidosis. In-
stead, it is likely a response to hypercalciuria and an
attempt to prevent nephrocalcinosis. Thus, this finding
provides further evidence of a renal Ca2� leak. Another
protective mechanism against nephrocalcinosis is uri-
nary dilution. Increased delivery of Ca2� to the DCT/
CNT should dilute the urine by downregulating aqua-
porin-2 expression.20 However, klotho�/� mice have
concentrated urine compared with wild-type mice.
This contributes to the formation of Ca2�-P(i) precip-
itates and augments our understanding of this process.
The reason for this apparent discrepancy is a greater
need to protect intravascular volume than prevent
stone formation. Klotho�/� mice would tend toward a
reduced intravascular volume because they clearly have
increased insensible losses. This latter phenomenon is
the combined result of increased surface area to weight
ratio and skin and lung disease. The presence of lung
disease is evidenced by a respiratory acidosis in
klotho�/� mice and the literature (Supplemental Table
3).21,22 Regardless, clearly both acidification and dilu-

tion of urine are needed to prevent salt precipitations in the pres-
ence of increased Ca2� excretion. A concentrated urine in the
presence of hypercalciuria contributes to the formation of renal
Ca2�-P(i) precipitates in the klotho�/� mice.

Increased TRPV5 and decreased calbindin-D28K and NCX1
expression is seemingly paradoxical. To exclude the possibility
that they represent renal 1,25(OH)2D3 resistance, we mea-
sured calbindin-D9K and VDR expression (Supplemental Fig-
ure 3). Calbindin-D9K expression was appropriately increased
in the presence of increased 1,25(OH)2D3 and reduced to wild-
type levels by dietary restriction. Moreover, decreased VDR
expression in klotho�/� mice cannot explain this observation.
The observed upregulation of 1�OHase in klotho�/� mice is in
agreement with the literature.6,8 1�OHase mRNA expression is
also enhanced in FGF23�/� mice,23 and administration of

Figure 4. Klotho knockout mice show Ca2�-phosphate precipitates. Low-
power images of von Kossa–stained renal sections of wild-type (A) and
klotho�/� (B) mice. Toluidine blue–stained renal section of a peri-glomerular,
stone-containing region of a klotho�/� renal section (C); note arrows point to
calcium precipitations. Transmission electron micrograph of renal cortex
from a klotho�/� renal section (D); note arrows point to calcium precipita-
tions. A representative energy map (E) and x-ray spectra (F) from EDX
measurements performed on the Ca2�-containing deposits. A high-magni-
fication image of DCT/CNT (G–I) stained first with the von Kossa method to
visualize Ca2� and then immunostained with anti-calbindin-D28K to localize
the DCT/CNT.
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FGF23 to wildtype mice reduces 1�OHase gene levels.24 In vitro
experiments have shown that the FGF23 signaling pathway is
mediated via extracellular signal–regulated kinase 1/2.24 These
findings are consistent with klotho, in concert with FGF23,
participating in an inhibitory feedback loop that results in the
suppression of 1,25(OH)2D3 synthesis, as has also been dis-
cussed by others.6 Regardless, rather than supporting the pres-
ence of renal 1,25(OH)2D3 resistance, these findings are com-
patible with a defect in active transcellular Ca2� absorption
from the DCT/CNT through TRPV5.12,15 The rate of Ca2�

influx determines the level of calbindin-D28K and NCX1 ex-
pression12,15,25; consequently, the low expression levels of these
proteins suggest impaired Ca2� influx through TRPV5. Al-
though TRPV5 expression is increased, it is probably function-
ally insignificant, because TRPV5 is likely not retained in the
plasma membrane because of the absence of klotho.10,11 This is

consistent with the observation that the application of klotho
to cells expressing TRPV5 greatly increases cell surface expres-
sion and activity of the channel.10,11 Specifically, in vitro,
klotho, by cleaving the terminal sialic acid residue on the N-
linked glycosylation site of TRPV5, exposes a glycosylation se-
quence that permits galectin-1 to retain TRPV5 in the apical
membrane.11 Moreover, microperfusion studies of isolated
DCT/CNT from klotho�/� mice fail to show increased Ca2�

influx in the presence of parathyroid hormone,9 a process me-
diated by TRPV5. Together these results provide strong evi-
dence of a primary defect in DCT/CNT TRPV5 activation in
klotho�/� mice, both in vitro and now in vivo. Our findings
support a central role for klotho in Ca2� homeostasis by pre-
venting renal Ca2� loss and the commonly associated prob-
lems nephrolithiasis and osteopenia. Both of these clinical
problems occur more frequently with advanced age, as does

Figure 5. Characteristics of wild-type and klotho�/� mice on control diet and LVD. Serum levels of 1,25(OH)2D3 (A) and Ca2� (B) from
wild-type (WT) and klotho�/� (KO) mice on control diet (CD) or LVD, n � 6 per group. The fractional excretion (FE) of Ca2� from
wild-type and klotho�/� mice on either CD or LVD, n � 6 per group. Renal TRPV5 (D), calbindin-D28K (E), or duodenal calbindin-D9K

(F) protein expression from wild-type and klotho�/� mice on either CD or LVD, n � 6 per group. (E and F) �-actin has been blotted as
a loading control (bottom panel). (G) Representative three-dimensional reconstructions of femurs from wild-type and klotho�/� mice
on either CD or LVD, n � 4 per group. Note the thinner cortices (arrows) and reduced trabecular bone volume (arrowhead) in the CD-KO
mice. The black boxes indicate the scan areas for the analyses of (1) trabecular and (2) cortical bone, respectively. *P � 0.05 compared
with CD-WT.
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the incidence of hypercalciuria. Thus, our results provide fur-
ther molecular details of the contribution of klotho to the
problems associated with advanced age.

To exclude the possibility that the increased Ca2� excretion
observed in klotho�/� mice was caused by a secondary effect of
hypervitaminosis D or hypercalcemia, we normalized both
these parameters. This experiment clearly showed that the
fractional excretion of Ca2� in klotho�/� mice remains ele-
vated, even in the absence of increased serum 1,25(OH)2D3 or
Ca2� levels. In contrast, the elevated levels of calbindin-D9K

were normalized by this perturbation, suggesting that elevated
1,25(OH)2D3 levels were driving their expression. This result is
similar to that observed in bone. Normalization of serum
1,25(OH)2D3 levels in klotho�/� mice prevented osteope-
nia, suggesting that this abnormality may also be secondary
to the increased 1,25(OH)2D3 level. Although renal Ca2�

wasting will cause increased serum 1,25(OH)2D3 levels, we
cannot exclude the role of klotho in FGF23 signaling from
contributing to this abnormality in klotho�/� mice. Indeed
both these mechanisms likely contribute to the particularly
elevated levels of serum 1,25(OH)2D3 and Ca2� observed in
these animals.

Our results clearly showed a reduction in cortical volume,
trabecular density, and trabeculae number in klotho�/� mice
on a control diet (Supplemental Table 6). Consequently, the
thinner trabecular bone structures become apparent in the 3D
reconstruction (Figure 5G). Our observations differ from the
previously reported studies26 –31 in that we found decreased
trabecular thickness, volume, and number per area; however,
our cortical analyses are consistent with these reports. The tra-
becular differences may be because of the age of the mice we
analyzed (7 to 8 wk old versus 4 to 5 wk in some studies28 –30).
Perhaps in these weeks, accelerated aging occurs, which could
explain the observed discrepancy. Another variation between
some of those reports and ours is the long bone studied. We
performed detailed analysis on femurs, whereas previous au-
thors have focused more on the tibia.26,30 The genetic back-
ground of the klotho�/� mice also differs between some of
these reports. In our experiments, klotho�/� mice with a
C57Bl6 background were used, whereas Yamashita et al.31 per-
formed studies in klotho�/� mice generated from a C3H
strain. Furthermore, as with the other studies, ours was com-
pleted on young mice with immature skeletons; as such, these
results may not apply to an aging skeleton.

In summary, we provide in vivo data consistent with de-
creased TRPV5 activity in klotho�/� mice. This is a primary
consequence of the absence of klotho and not secondary to
elevated serum Ca2� and 1,25[OH)]2D3 levels. In fact, these
latter findings are likely a direct consequence of this abnormal-
ity, because the expression of Ca2�-transporting proteins was
normalized and osteopenia was prevented by reducing the se-
rum concentration of 1,25(OH)2D3. In contrast, this fails to
return the fractional excretion of Ca2� to that of the wild-type
animals, providing direct evidence for a primary renal Ca2�

leak. This likely drives the hypervitaminosis D and hypercalci-

uria and contributes to the formation of nephrocalcinosis in
DCT/CNT of klotho�/� mice. We therefore provided evidence
that klotho activates TRPV5 in vivo, thereby explaining its cen-
tral role in Ca2� homeostasis.

CONCISE METHODS

Generation and Characterization of Klotho�/� Mice
Heterozygous klotho�/� mice were purchased from Mutant

Mouse Regionale Resource Centers (ID: 011732-UCD); the details

of their generation are provided elsewhere.32 These were bred to

C57Bl/6 wild-type animals, and the heterozygous offspring were

crossed to produce klotho�/� animals. Standard pelleted chow

(0.25% [wt/vol] Na, 1.1% [wt/vol] Ca, 0.2% [wt/vol] Mg, 0.7%

[wt/vol] P(i), and 0.9% [wt/vol] K) and drinking water were avail-

able ad libitum. Klotho�/� and wild-type animals were housed in

metabolic cages for 24 h at a time (n � 10 of each). All experiments

were performed in compliance with the animal ethics board of the

Radboud University Nijmegen.

Low Ca2�, P(i), and 1,25(OH)2D3 Diet
After crossing heterozygous pairs, produced as described above, preg-

nant females were separated into individual cages and allocated to

either the control diet (CD) or LVD. The content of the control,

synthetic diet consisted of {0.19% [wt/vol] Na, 0.9% [wt/vol] Ca,

0.21% [wt/vol] Mg, 0.63% [wt/vol] P, and 0.97% [wt/vol] K, and 1500

IU 1,25(OH)2D3}, and the LVD contained (0.19% [wt/vol] Na, 0.34%

[wt/vol] Ca, 0.21% [wt/vol] Mg, 0.22% [wt/vol] P, 0.97% [wt/vol] K,

and �5 IU Vitamin D). Lactating mothers continued to receive the

allocated diet, and the pups, on weaning, were fed the appropriate

diet. Between 7 and 8 wk of age, the klotho�/� mice and wild-type

animals were housed in metabolic cages for 24 h, after which blood

was collected, mice were killed, and tissue was sampled.

Characterization of Ca2� Homeostasis
Serum and urine Ca2� concentration was determined using a color-

imetric assay kit as described previously.33 A flame spectrophotome-

ter (FCM 6343; Eppendorf, Hamburg, Germany) was used to measure

serum and urine Na� concentrations and urine K� concentrations.

Serum and urine P(i) and creatinine concentrations and venous

blood gases were determined using a Hitachi autoanalyzer (Hitachi,

Laval, Quebec, Canada). Serum and urine osmolarity was obtained

using a Halbmikro-Osmometer K-7400 (Knauer, Berlin, Germany).

The in vivo 45Ca2� absorption assay was performed as described else-

where.34 qPCR for TRPV5, TRPV6, calbindin-D9K, calbindin-D28K,

NCX1, PMCA1b, VDR, and 1�OHase was completed essentially as

described previously.35–37 Immunohistochemistry and its quantifica-

tion for TRPV5 followed the procedure detailed elsewhere.38 Semi-

quantitative immunoblotting for calbindin-D28K, calbindin-D9K, and

aquaporin-2 has been described previously39,40 Polyclonal anti-VDR

antibody (Santa Cruz Biotechnology, Santa Cruz, CA) was used at a

dilution of 1:200. Von Kossa staining was performed to visualize

Ca2�-containing precipitates.
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Electron Microscopy
Renal tubular Ca2� precipitations were analyzed by transmission

electron microscopy. Kidney samples were fixed in 2.5% (wt/vol) glu-

taraldehyde dissolved in 0.1 M cacodylate buffer, pH 7.4, at room

temperature for 2 h after dissection. Samples were subsequently

washed three times with 0.1 M sodium cacodylate buffer and post-

fixed with 1% (wt/vol) osmium tetroxide in 0.1 M sodium cacodylate

buffer at room temperature for 1 h. Samples were dehydrated and

processed for embedding in Epon resin. Polymerization was per-

formed in a 60°C oven. For morphology studies, sections were cut

using a diamond knife and mounted on copper grids (100 mesh).

Sections were stained with uranyl acetate and lead citrate and exam-

ined using a Jeol 1200 EX II. For EDX measurements, section thick-

ness was approximately 200 nm, and postfixation was omitted, not

contrasted, and subsequently examined using a Jeol 1200/STEM in

combination with a Thermo Noran microanalysis SIX system

(Thermo Fisher Scientific, Waltham, MA). Accelerated voltage of 60

keV was used for x-ray microanalysis. X-ray spectra and maps for

Ca2� and P(i) distribution were acquired.

Bone Structural Analysis
After fixation in 10% (wt/vol) formalin and measuring their lengths,

femurs from both wildtype and klotho�/� mice on control diet

(CD-WT and CD-KO, respectively; n � 4) and wildtype and

klotho�/� mice on LVD (LVD-WT and LVD-KO, respectively; n �

4) were studied in detail by scanning them in an in vivo microcom-

puted tomography scanner (Skyscan 1076; Skyscan, Aartselaar, Bel-

gium). Scans were processed, and three-dimensional morphometric

analyses of the bones were performed, using free software of the 3D-

calculator project (www.skyscan.be/products/downloads.htm) as de-

scribed earlier.12 All parameters were expressed according to the bone

histomorphometry nomenclature.41 The region of interest was con-

fined to the proximal half of the femur and contained both trabecular

(scan area, 0 to 4.1 mm; indicated in Figure 5G) and cortical (scan

area, 7.2 to 8.1 mm) bone structures, enabling accurate analysis of a

number of parameters in both compartments. Using several software

packages, three-dimensional representations were made from femurs

of each experimental group.

Statistical Analysis
Data are expressed as mean � SEM. Statistical comparisons were

analyzed by one-way ANOVA with a Bonferroni correction for mul-

tiple comparison. A P � 0.05 was considered statistically significant.

All analyses were performed using the SPSS Statistical Package soft-

ware (Power PC version 4.51; Abacus Concepts).

Further details of the materials and methods can be found online.
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